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J. Phys. A: Math.  Gen .  20 (1987) 6135-6141. Printed in the U K  

COMMENT 

Renormalisation group for DLA and fixed-point distribution 

Takashi Nagatani 
College of Engineering, Shizuoka University, Hamamatsu 432, Japan 

Received 13 April 1987, in final form 6 July 1987 

Abstract. A renormalisation group method is presented to analyse the multifractal structure 
of the growth probability in the diff usion-limited aggregation ( D L A ) .  A renormalisation 
group transformation is derived for the probability distribution of the growth bond’s 
conductance.  After repeated scaling, an  ‘invariant’ distribution is reached a s  a fixed-point 
distribution. The growth probability assigned to each growth bond  is represented by a 
random multiplicative process of the cell’s growth probability with fixed-point distribution. 
A hierarchy of generalised dimensions D ( 9 )  is calculated and  the a- f  spectrum is found.  

Recently, there has been increasing interest in the problem of geometrical structure in 
diffusion-limited aggregation ( DLA)  (Family and Landau 1986, Pynn and Skjeltorp 
1985, Pietronero and Tosatti 1986, Stanley and Ostrowsky 1986, Stanley 1986). It is 
well known that they have a strong measure of self-similarity, which is characterised 
by the fractal dimension D (Mandelbrot 1982). Halsey et a1 (1986) and  Amitrano et 
a1 (1986) find that the DLA has the multifractal structure. They calculate the growth 
probability distribution on the perimeter sites of the aggregates numerically and find 
a hierarchy of generalised dimensions D( 9)  and  an a - f  spectrum. Coniglio (1986) 
proposes a mechanism which generates multifractality, based on a multiplicative 
process for the hierarchical model of the percolating cluster. Nagatani (1987) presents 
a real space renormalisation group ( R G )  method and finds a random multiplicative 
process of the cell growth probability under the RG transformation. The infinite 
exponents D ( q )  and the a - f  spectrum are first found from the standpoint of the RG. 

Gould et a1 (1983) presented a position space renorma!isation group method to derive 
the fractal dimension. Kolb (1987) derived the fractal dimension from a Monte Carlo 
RG method. 

I n  this comment, we present an improved RG method for the multifractal structure 
in the DLA. We propose the renormalisation transformation to the probability distribu- 
tion of the growth bond conductance which is relevant to the conductance of the 
surface layer. After repeated transformation, an  ‘invariant’ distribution is reached as 
a fixed-point distribution. In the letter by Nagatani (1987) the configurational average 
of the conductance of the growth bond was renormalised and approached a fixed-point 
value. The growth bond conductance was assumed to be a deterministic variable. 
However, the growth bond conductance will generally be a random variable. In this 
comment we derive the probability distribution density of the growth bond conductance 
by using the RG method. 

Let us consider a renormalisation procedure for DLA. Cover all the space of the 
square lattice by cells of edge b, each containing b2 bonds; an  example for b = 2 is 
shown in figure 1. After a renormalisation transformation these cells play the role of 
‘renormalised’ bonds. We classify the renormalised bonds into three types: ( a )  broken 
bonds which construct the aggregate, ( b )  growth bonds which are on the perimeter of 
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Figure 1. Illustration of the dividing and  rescaling of a h = 2 cell on the square lattice. 
The rescaled bonds are indicated by double  lines. Broken lines indicate boundaries dividing 
the square lattice into cells. 

the aggregate and can be successively grown and ( C) unbroken bonds which surround 
the aggregate, except for the growth bonds. If the cell is spanned with the broken 
bonds then the renormalised bond is considered to be broken (figure 2 ( a ) ) .  If the cell 
is not spanned with the broken bonds and is a nearest neighbour to the cell with a 
spanning cluster, then the cell is renormalised as the growth bond (figure 2 ( b ) ) .  When 
the cell is constructed by unbroken bonds only and  is not a nearest neighbour to the 
cells with spanning clusters, the cell is renormalised as the unbroken bond (figure 
2(c)) .  We concern the growth bond to construct the surface layer of the aggregate. 
We define the conductance of the growth bond as a conductance of the surface layer. 
We note that the non-local nature of the electric field is taken into account as the 
conductance of the growth bond. For later convenience, we summarily explain the 
renormalisation of the growth bond conductance in Nagatani (1987). We consider a 
renormalisation of the growth bond conductance by assuming i t  to be a deterministic 
variable. If a cell is renormalised as a growth bond, the cell's conductance gn+l is 
then represented by the conductance g,, of the growth bond within the cell after the 
( n  + 1)th renormalisation transformation:  IT,,+^ = R(v,,). The relationship presents the 
renormalisation group equation. This has a non-trivial solution IT* (> 1 ) .  At the fixed 
point the derivative d R / d a  has a positive value less than one. This has a stable fixed 
point. After many repeated renormalisations, the conductance of the growth bond 
approaches the value IT* at the fixed point. In this comment we treat the growth bond 
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Figure 2. Renormalisation procedure of a h = 2 cell for DLA. The broken and unbroken 
bonds are  indicated by the bold and light lines, respectively. The bonds,  renormalised as  
the growth bond, a r e  represented by the wavy line. Examples of the distinct configurations 
are  shown in ( a ) ,  ( b )  a n d  ( c ) ,  which a re  renormalised as  the broken, growth a n d  unbroken 
bonds,  respectively. 
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conductance as a random variable more exactly. We will derive the RG equation for 
the probability density of the growth bond conductance. An ‘invariant’ distribution 
will be reached as a fixed-point distribution. 

We consider the growth probability on the growth bond. We define two growth 
probabilities P, and p ,  where P, indicates the growth probability on the perimeter of 
the aggregate with size L (where L is the total size of the aggregate) and p ,  is the 
growth probability on the growth bond within the cell. We call p ,  the cell’s growth 
probability. Consider the electrostatic problem for cells which can be renormalised 
as the growth bond. The cell’s growth probability p ,  on the growth bond i is given by 
p ,  - u,E, where E, is the local electric field on the growth bond and a, is the conductance 
of the growth bond. The electric fields on the growth bonds within the cell are 
determined by the conductance of the growth bonds and the configuration of the cell. 
All the distinct configurations which it is possible to renormalise as the growth bond 
are shown in figure 3 for the simplest example ( b  = 2 ) .  We derive the cell’s growth 
probability. Since the cell’s growth probability is independent of the applied voltage 
of the cell, we apply an arbitrary voltage between the top and the bottom which are 
represented by the full circle. The broken lines indicate the electrical connections in 
figure 3. The set of growth probabilities within the cells is given by 

PI.1 = (VIA + ~ l , l ~ l , 2 ) / ( ~ l , l  + ~ , , 2 + 2 ~ , , , ~ , , 2 )  

Pl.2 = ( ( + l , 2 +  ~ l , l ~ l , ~ ~ / ~ ~ l , l  + ~ l , 2 + 2 ~ 1 , 1 ( + 1 , 2 )  

P 2 , l  = ( ( + > , I  + ( + 2 . 1 ~ 2 , 2 ) / ( ~ 2 , I  + a 2 , 2 +  a 2 . 1 a 2 . 2 )  

P 2 . 2  = a 2 . 2 / ( u 2 , 1 +  a 2 , 2 +  u 2 , 1 q 2 , 2 )  
(1) 

P 3 . 1  = a 3 , 1 / ( a 3 , 1 + a 3 , 2 )  

P 3 . 2  = a 3 . 2 / ( a 3 , 1  + a 3 , 2 )  

where p and a indicate the cell’s growth probability and conductance of the growth 
bond, respectively, and the first and second subscripts label the cell’s configuration 
and position of the growth bonds (see figure 3). We consider the cell’s conductance 
to be possible to renormalise as the growth bond. The conductance of the cell with 
configurations labelled by (11, ( 2 )  and (3) are renormalised as follows: 

I 1 1  
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Figure 3. All configurations of the cell being possible to be renormalised as the growth 
bond. Configuration ( 2 )  is obtained by adding a broken bond on the growth bonds 1 or 
2 i n  configuration ( 1  ). By adding furthermore a broken bond to configuration ( 2 ) ,  configur- 
ation ( 3 )  occurs. 
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Consider the configurational probability C, with which a particular configuration a 
appears. Figure 3 shows all the configurations of the cell that are possible to renormalise 
as the growth bond. The distinct configurations are labelled by a ( a  = 1,2,3).  
Configuration (2) is constructed by adding a broken bond to configuration (1). In 
addition, by adding a broken bond to the growth bond (2,2) in configuration (2), 
configuration (3) occurs. The configurational probabilities C, ( a  = 1,2,3)  are given by 

c3 = P2.210 + P 2 . 2 ) .  

In general, the renormalised conductance ah of the cell with a particular configuration 
a is given by 

d =L({%J) (4) 

where {a,,,} represents the set of conductances of the growth bonds within the cell a. 
The growth probability on the growth bond i within the cell a is represented by a 
function of the set of growth bond conductances 

Pa,{ = g,({g,,,l). ( 5 )  

The probability that a given growth cluster configuration occurs is given by the product 
of growth probabilities of adding a broken bond at each step. The configurational 
probability C, is determined by the growth bond conductances of the cells 

c, = k({g,.,}I) (6) 
where {{a,,,}} indicates the set of growth bond conductances for all configurations. 

Let us consider the renormalisation transformation of the probability distribution 
p ( u )  of the growth bond conductance U. Our procedure is similar to that devised by 
Stinchcombe and Watson ( 1976) for percolation conductivity. The probability density 
p ( a )  that the growth bond has conductance U is given by 

where p ( a ) ' " + I '  indicates the probability density obtained by the ( n  + 1)th iteration. 
For the simplest scaling, the above renormalisation transformation is 
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By inserting the initial distribution p(a ) ' ' '  = S ( a -  1) into the right-hand side of (8), 
we obtain a new distribution p ( a ) ( ' ) ,  and we continue so that a sequence p ( a ) ' " '  of 
distributions are obtained such that 

p(a ) ( " * "  = R { p ( a ) ( " ' } .  (9) 
Equation (9) serves as a position space renormalisation group transformation. After 
many repeated iterations, an 'invariant' distribution is reached: 

p ( a ) *  = lim p ( a ) ( " ' .  (10) 

p(a)*  = R b J ( a ) * } .  (11) 

" + X  

The fixed-point distribution p (  a)* of the transformation (9) satisfies the relation 

The integral equation (8) is numerically solved by repeated iteration. Figure 4 shows 
successive iterations of a conductance distribution. The rapid approach of the sequence 
{ p ( a ) ' " ' }  to a limit is found. The fixed-point distribution is shown in figure 5.  Under 
RG transformation, the growth probability Pi(L)  on any growth bond i is given by 

Pi(L) = ~ p . i P p  (L/ b )  (12) 

I 1 

1 3 5 1 3 5  1 3 5 
U U 0 

Figure 4. Successive iterations of the conductance distribution under the simple RG 
transformation. ( a )  The result of the first iteration; 
( c )  the result of the third iteration. 

0.2, 

9* 

0 .1  

0 12 4 8 

( b )  the result of the second iteration; 

U 

Figure 5. Invariant conductance distribution p ( u ) *  for the RG transformation (8). 
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where L represents the size of the system, b is the scale factor and p p , ,  indicates the 
growth probability of the growth bond i within the cell /3. After many repeated 
renormalisations, p p , ,  approaches the random variable pg , ,  with the fixed-point distribu- 
tion of the growth bond's conductance. From relation (12) we can construct an infinite 
hierarchy of generalised dimensions D ( q )  = - (q  - 1)-' log(Zl Pp)/Iog L. In the limit 
of L sufficiently large, the most probable value of Z PP is given by 

f lo:n 
0 5  

where ( ) g  and ( ) a  indicate a geometric mean over configurations and an arithmetic 
mean over the growth bond's conductance of each cell and n = log(L)/log( b) .  For 
the b = 2 scaling, the generalised dimension D ( q )  is given by 

where 

( ) = d r ,  d a Z  da l )*p (a2 )* .  

The exponents D( q )  are plotted in figure 6( a ) .  The partition of D ( q )  into a density 
of singularitiesf(q) with singularity strength a (  q )  is introduced. The relation between 
a and f is shown in figure 6( b) .  The a- f  spectrum agrees qualitatively with the result 
of Amitrano er a1 (1986) but is poor quantitatively. This poor result contributes to the 
small-size cell of the renormalisation transformation. Comparing the present result 
with that derived from the approximate RG transformation by use of the average 
conductance (Nagatani 1987), we do not find any difference in the a- f  spectrum. The 
RG transformation of the conductance will be approximated by that of the average 
conductance proposed by Nagatani (1987). 

In summary, we present the renormalisation group method to derive the multifrac- 
tality of the cluster structure of surface layers in diff usion-limited aggregation. The 
RG transformation of a probability density of the growth bond conductance is found. 
After repeated scaling, an 'invariant' distribution is reached as a fixed-point distribution. 



Renormalisation group for D L A  6141 

Under RG transformation the growth probability is represented by a random multiplica- 
tive process of the cell’s growth probability. I t  is given by a function of the growth 
bond conductance which has the fixed-point distribution. The multifractal spectrum 
is found for DLA. Our RG approach to the scaling structure is general and is not limited 
to the particular cell considered here. 
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